Ch 13 Chemical Kinetics

Modified by Dr. Cheng-Yu Lai

Outline

- 1. Meaning of reaction rate
- 2. Reaction rate and concentration
- 3. Writing a Rate Law
- 4. Reactant concentration and time
- 5. Reaction rate and temperature
- 6. Catalysis and Reaction mechanisms

We want to know how fast is this reaction ? Reaction Rate = ?

Reaction Rate

The change in concentration of a reactant or product per unit of time.

Reaction Rate and Stoichiometry

• In most reactions, the coefficients of the balanced equation are not all the same.

 $\mathsf{H}_{2\,(g)} + \mathsf{I}_{2\,(g)} \rightarrow 2\,\mathsf{HI}_{(g)}$

- For these reactions, the change in the number of molecules of one substance is a multiple of the change in the number of molecules of another.
 - For the above reaction, for every 1 mole of H_2 used, 1 mole of I_2 will also be used and 2 moles of HI made.
 - Therefore, the rate of change will be different.
- To be consistent, the change in the concentration of each substance is multiplied by 1/coefficient.

Rate
$$= -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = +\frac{1}{c} \frac{\Delta[C]}{\Delta t} = +\frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

 $H_{2(g)} + I_{2(g)} \rightarrow 2 HI_{(g)}$

Using $[H_2]$, the instantaneous rate at 50 s is as follows:

 $Rate = -\frac{-0.28 \text{ M}}{40 \text{ s}}$ $Rate = 0.0070 \frac{\text{M}}{\text{s}}$

Using [HI], the instantaneous rate at 50 s is as follows: $Rate = \left(\frac{1}{2}\right) \frac{0.56 \text{ M}}{40 \text{ s}}$ $Rate = 0.0070 \frac{\text{M}}{\text{s}}$

General Form of the Rate Relationship

• For a reaction where $aA + bB \rightarrow cC + dD$

$$rate = \frac{-\Delta[A]}{a\Delta t} = \frac{-\Delta[B]}{b\Delta t} = \frac{\Delta[C]}{c\Delta t} = \frac{\Delta[D]}{d\Delta t}$$

Example - Formation of Ammonia

• $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

rate =
$$\frac{-\Delta[N_2]}{\Delta t} = \frac{-\Delta[H_2]}{3\Delta t} = \frac{\Delta[NH_3]}{2\Delta t}$$

If the N₂ is disappearing at 0.10 mol/L-min, the H₂ is disappearing at the rate of 0.30 mol/L-min and ammonia is appearing at a rate of 0.20 mol/L-min

Reaction Rate Relationship between Reactants and Products Concentration

- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
 - What happens to the concentrations with time?
 - [N₂O₅] decreases
 - [NO₂] and [O₂] increase
 - Mathematically, we can express <u>the concentration change</u> <u>relationship between reactants and products</u> as

$$-\Delta[N_2O_5] = \frac{\Delta[NO_2]}{2} = \frac{\Delta[O_2]}{\frac{1}{2}}$$

A short reminder Reaction Rate : The change in concentration of a reactant or product per unit of time.

$$rate = \frac{\Delta[C]}{\Delta t}$$

EXAMPLE 11.1

Consider the following balanced hypothetical equation.

$$A(g) + 3B(g) \longrightarrow C(g) + 2D(g)$$

a Express the average rate of the reaction with respect to each of the products and reactants.

b In the first 20 seconds of the reaction, the concentration of B dropped from 0.100 *M* to 0.0357 *M*. What is the average rate of the reaction in the given time interval?

• Predict the change in the concentration of D during this time interval.

Image: Solutionrate =
$$\frac{-\Delta[A]}{\Delta t} = \frac{-\Delta[B]}{3\Delta t} = \frac{\Delta[C]}{\Delta t} = \frac{\Delta[D]}{2\Delta t}$$
continued

	ANALYSIS		
Information given:	time, t (20 s) [B] _o (0.100 M); [B] after 20 seconds (0.0357M) from part (a): the reaction rate for B $\left(\frac{-\Delta[B]}{3\Delta t}\right)$		
Asked for:	average rate of the reaction		
	STRATEGY		
Substitute into the rate equ	uation obtained in part (a).		
	SOLUTION		
average rate	rate = $\left(\frac{-\Delta[B]}{3\Delta t}\right) = -\frac{(0.0357 M - 0.100 M)}{3(20 s)} = 1.07 \times 10^{-3} M/s$		
©			
	ANALYSIS		
Information given:	from part (a): the rate equation for $D\left(\frac{-\Delta[D]}{2\Delta t}\right)$; rate of reaction (1.07 × 10 ⁻³ <i>M</i> /s)		
Asked for:	change in the concentration of D after 20 s, (Δ [D])		
	STRATEGY		
Substitute into the rate equ	uation obtained in part (a).		
	SOLUTION		
Δ[D]	rate = $\frac{\Delta[D]}{2\Delta t}$; $\Delta[D] = (1.07 \times 10^{-3} M/s)(2)(20 s) = 0.0428 M$		
	END POINT		
The answer obtained in pa	art (c) is not the concentration of D after 20 s but rather the change in the concentration of D. I		

Curved Rather than Straight Line Tell Us That.....

Rate is not Constant
 Throughout
 Reaction- just like 5K
 racing

II. Reaction Rate isHigher with HigherConcentration

(-) slope means concentration is decreasing, less steep

Rate and Each Reactant Concentration

b

MORE CHANCE FOR MOLECULES **TO COLLIDE**

 $0.1 M \text{ KMnO}_4 + 10 \text{ mL H}_2\text{O}_2$

5 M KMnO₄

 $5 M \text{KMnO}_4 + 10 \text{ mL H}_2\text{O}_2$

Rate and Rate Law

Differentiated Rate Law : expressed the relationship between the <u>concentration of reactants</u> and the rate of reaction. The differentiated Rate Law is usually just called rate law. $aA + bB \rightarrow cD + dD$

The rate law for the above equation is

rate $\alpha [A]^{x}[B]^{y}$

The symbol α is the proportionality sign.

rate = $k [A]^{x} [B]^{y}$

Rate unt is always in mol/L-time

(1)

where k is known as **rate constant** is the proportionality constant between the reaction rate and reactant concentrations. The above equation is known as *rate law or rate*

There are three orders:X,Y Determined by experimentalThe order with respect to A - xdata- Stoichiometry of equation isThe order with respect to B - yirrelevantThe overall order (x+y)•Only reactants in rate law

Example

Consider the following reaction

 $2 \operatorname{NO}(g) + O_2(g) \rightarrow 2 \operatorname{NO}_2(g)$

From the following data collected at 25° C, determine (a) the rate law (rate equation), (b) rate constant, and (c) rate of the reaction when $[NO] = 5 \times 10^{-3} \text{ M}$ and $[O_2] = 7 \times 10^{-3} \text{ M}$.

Experiment	[NO] (M)	[O ₂] (M)	Initial Rate (M/s)
1	2 x 10 ⁻³	1 x 10 ⁻³	1.25 x 10 ⁻⁴
2	4 x 10 ⁻³	1 x 10 ⁻³	$5.0 \ge 10^{-4}$
3	4 x 10 ⁻³	$2 \ge 10^{-3}$	10.0 x 10 ⁻⁴

(a) The rate law

The rate equation for the above reaction is

rate =
$$k [NO]^{x} [O_2]^{y}$$

For the general reaction:

 $aA + bB \rightarrow cC + dD$

stoichiometric coefficients.

Rate = $k [A]^x [B]^y$

step 1. determine x

Time

Concentration

NO₂

02

NO

step 2. determine y

Experiment	[NO] (M)	[O ₂] (M)	Initial Rate (M/s)
1	2 x 10 ⁻³	1 x 10 ⁻³	1.25 x 10 ⁻⁴
2	4 x 10 ⁻³	1 x 10 ⁻³	$5.0 \ge 10^{-4}$
3	4 x 10 ⁻³	2 x 10 ⁻³	10.0 x 10 ⁻⁴

Step 1. Determination of x

rate1 = k $[2 \times 10^{-3}]^{x} [1 \times 10^{-3}]^{y}$ (experiment 1)

rate2 = k $[4 \times 10^{-3}]^{x} [1 \times 10^{-3}]^{y}$ (experiment 2)

$$\frac{rate2}{rate1} = \frac{k \left[4x10^{-3}M\right]^x \left[1x10^{-3}M\right]^y}{k \left[2x10^{-3}M\right]^x \left[1x10^{-3}M\right]^y} = \frac{\left[5x10^{-4}M/s\right]}{\left[1.25x10^{-4}M/s\right]}$$

Therefore,

$$\frac{[4x10^{-3}M]^x}{[2x10^{-3}M]^x} = 4 \text{ or } 2^x = 4$$

Hence y =1

The rate equation for this chemical equation is written as

rate = k [NO]² $[O_2]^1$ = k $[NO]^2 [O_2]$

Hence x = 2

Determination of y

rate2 = k $[4x \ 10^{-3}]^x [1 \ x \ 10^{-3}]^y$ (experiment 2)

rate3 = k $[4 \times 10^{-3}]^{x} [2 \times 10^{-3}]^{y}$ (experiment 3)

$$\frac{rate3}{rate2} = \frac{k \left[4x10^{-3}M\right]^{x} \left[2x10^{-3}M\right]^{y}}{k \left[4x10^{-3}M\right]^{x} \left[1x10^{-3}M\right]^{y}} = \frac{\left[10x10^{-4}M/s\right]}{\left[5x10^{-4}M/s\right]}$$

ore,

$$\frac{[2x10^{-3}M]^{y}}{[1x10^{-3}M]^{y}} = 2 \text{ or } 2^{y} = 2$$

Experiment	[NO] (M)	[O ₂] (M)	Initial Rate (M/s)
1	2 x 10 ⁻³	1 x 10 ⁻³	1.25 x 10 ⁻⁴
2	4 x 10 ⁻³	1 x 10 ⁻³	5.0 x 10 ⁻⁴
3	4 x 10 ⁻³	$2 \ge 10^{-3}$	$10.0 \ge 10^{-4}$

(b) Rate constant

The rate constant k can be evaluated by rearranging the above rate equation as

$$k = \frac{rate}{[\text{NO}]^2[\text{O}_2]}$$

To calculate the k you can take the concentrations of [NO] and $[O_2]$ from **any one of the experiment.** It does not make any difference which data you take, all should yield the same result. Suppose, we take the data from the experiment 2, we get

$$k = \frac{5x10^{-4}}{[4 \text{ x } 10^{-3}]^2 [1 \text{ x } 10^{-3}]} = 3.1 \text{ x } 10^4 / \text{M}^2 \text{ .s}$$

Therefore, the rate law (equation) becomes

rate = $3.1 \times 10^4 [NO]^2 [O_2] / M^2$.s Overall order =3

Experiment	[NO] (M)	[O ₂] (M)	Initial Rate (M/s)
1	2 x 10 ⁻³	1 x 10 ⁻³	1.25 x 10 ⁻⁴
2	4 x 10 ⁻³	1 x 10 ⁻³	5.0 x 10 ⁻⁴
3	4 x 10 ⁻³	2 x 10 ⁻³	$10.0 \ge 10^{-4}$

(c) rate of the reaction when $[NO] = 5 \times 10^{-3} \text{ M}$ and $[O] = 7 \times 10^{-3} \text{ M}$.

Now you substitute these values in the above equation to get the rate:

rate =
$$3.1 \times 10^4 [NO]^2 [O_2] / M^2.s$$

= $3.1 \times 10^4 (5 \times 10^{-3} M)^{2} (7 \times 10^{-3} M) / M^2.s$
= $5.4 \times 10^{-3} M/s$

Next, Concentration as a Function of Time from the rate and rate law equations

Integrated Rate Law for a First-Order Reaction

$$A \longrightarrow \text{product(s)}$$

rate = $k[A] - \frac{\Delta[A]}{\Delta t} = k[A]$

Calculus can be used to derive an **integrated** rate law.

 $\ln \left(\frac{[A]_{t}}{[A]_{0}} \right) = -kt - \begin{cases} [A]_{t} & \text{concentration of A at time } t \\ [A]_{0} & \text{initial concentration of A} \end{cases}$ Using: $\ln \left(\frac{x}{y} \right) = \ln(x) - \ln(y) \quad \left(\frac{\ln[A]_{t} = -kt + \ln[A]_{0}}{y = mx + b} \right)$

Integrated Rate Law for a First-Order Reaction

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$

rate = $k[N_2O_5]$

Calculate the slope:

 $\frac{-5.02 - (-4.17)}{650 \text{ s} - 150 \text{ s}} = -0.0017 \frac{1}{\text{ s}}$ $k = 0.0017 \frac{1}{\text{ s}}$

© 2012 Pearson Education, Inc.

Chapter 12/19

Half-Life of a First-Order Reaction

Half-Life: The time required for the reactant concentration to drop to one-half of its initial value

 $A \longrightarrow \text{product(s)}$ rate = k[A]

Half-Life of a First-Order Reaction

$$t_{1/2} = \frac{0.693}{k}$$

For a first-order reaction, the half-life is independent of the initial concentration.

Each successive half-life is an equal period of time.

First-Order Reactions

What is the half-life of N_2O_5 if it decomposes with a rate constant of 5.7 x 10⁻⁴ s⁻¹?

$$t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{5.7 \times 10^{-4} \text{ s}^{-1}} = 1200 \text{ s} = 20 \text{ minutes}$$

The reaction 2A \longrightarrow B is first order in A with a rate constant of 2.8 x 10⁻² s⁻¹ at 80^oC. How long will it take for A to decrease from 0.88 *M* to 0.14 *M*?

$$\ln[A] = \ln[A]_{0} - kt \qquad [A]_{0} = 0.88 M \qquad [A] = 0.14 M$$

$$kt = \ln[A]_{0} - \ln[A]$$

$$t = \frac{\ln[A]_{0} - \ln[A]}{k} = \frac{\ln \frac{[A]_{0}}{[A]}}{k} = \frac{\ln \frac{0.88 M}{0.14 M}}{2.8 \times 10^{-2} \text{ s}^{-1}} = 66 \text{ s}$$

Zero Order Reactions

 For a zero order reaction A → products

Rate = k[A]⁰ = k
[A] = [A]₀ - kt
$$t_{1/2} = \frac{[A]_{0}}{2k}$$
linear : [A] vs. t

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$
$$t_{1/2} = \frac{1}{k[A]_0}$$
$$linear : \frac{1}{[A]} vs.t$$

Second-Order Reactions

For A \rightarrow products, Rate = k[A]²

Note that the half life of a zero order reaction does depend on the initial concentration of reactant

For a second order reaction, a plot of ln[A] vs. t is **not linear**.

TABLE 12.4Characteristics of First- and Second-Order Reactions of the Type A \rightarrow Products			
	First-Order	Second-Order	
Rate law	$-\frac{\Delta[A]}{\Delta t} = k[A]$	$-\frac{\Delta[A]}{\Delta t} = k[A]^2$	
Concentration– time equation	$\ln \left[\mathbf{A} \right]_t = -kt + \ln \left[\mathbf{A} \right]_0$	$\frac{1}{[\mathbf{A}]_t} = kt + \frac{1}{[\mathbf{A}]_0}$	
Linear graph	ln [A] versus t	$\frac{1}{[A]}$ versus t	
	$\frac{In [A]_{0}}{Slope} = -k$	$\frac{1}{[A]}$ Slope = k $\frac{1}{[A]_0}$	
	Time	Time	
Graphical determination of <i>k</i>	k = -(Slope)	k = Slope	
Half-life	$t_{1/2} = \frac{0.693}{k}$ (constant)	$t_{1/2} = \frac{1}{k[A]_0}$ (not constant)	

Zeroth-Order Reactions

A plot of **[A]** versus **time** gives a straight-line fit and the **slope** will be **-***k*.

© 2012 Pearson Education, Inc.

EXAMPLE: The reaction

 $2 \operatorname{NOBr}(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$

is a second order reaction with respect to NOBr. $k = 0.810 \text{ M}^{-1} \cdot \text{s}^{-1}$ at 10° C.

If $[NOBr]_{o} = 7.5 \times 10^{-3}$ M, how much NOBr will be left after a reaction time of 10 minutes?

SOLUTION: One can solve for the amount of NOBr after 10 minutes by substituting the given data into the integrated rate law for a second-order reaction.

$$\frac{1}{[\text{NOBr}]_{t}} = \text{kt} + \frac{1}{[\text{NOBr}]_{0}} \qquad (\text{Second Order})$$
$$\frac{1}{[\text{NOBr}]_{t}} = (0.810 \text{ M}^{-1} \cdot \text{s}^{-1}) \times (600 \text{ s}) + \frac{1}{7.5 \times 10^{-3} \text{ M}}$$
$$\frac{1}{[\text{NOBr}]_{t}} = 6.19 \times 10^{2} \text{ M}^{-1}$$
$$[\text{NOBr}]_{t} = 1.6 \times 10^{-3} \text{ M}$$

TABLE 11.2 Characteristics of Zero-, First-, and Second-Order Reactions of the Form A $(g) \longrightarrow$ products; [A], [A]_o = conc. A at t and t = 0, respectively

Order	Rate Expression	ConcTime Relation	Half-Life	Linear Plot
0	rate = k	$[A]_{o} - [A] = kt$	[A] _o /2k	[A] vs. <i>t</i>
1	rate = $k[A]$	$\ln \frac{[A]_{o}}{[A]} = kt$	0.693/k	ln [A] vs. <i>t</i>
2	rate = $k[A]^2$	$\frac{1}{[A]} - \frac{1}{[A]_o} = kt$	1/k [A] _o	1 [A] vs. t

The *Overall Order* of a reaction is the sum of the individual orders:

Rate (Ms⁻¹) = $k[A][B]^{1/2}[C]^2$

Overall order: $1 + \frac{1}{2} + 2 = 3.5 = 7/2$

or seven-halves order

The units of a rate constant will change depending upon the overall order.

The units of rate are always M/s or Ms⁻¹

To find the units of a rate constant for a particular rate law, simply divide the units of rate by the units of molarity in the concentration term of the rate law.

Rate $(Ms^{-1}) = k[A] = 1^{st}$ order

R(units)
Units of k
$M s^{-1}$
s^{-1}
$M^{-1} s^{-1}$
$M^{-1} s^{-1}$
$M^{-2} s^{-1}$

Rules of logarithms

$\log\left(1\right)=0$	$\ln(1) = 0$
$\log(10) = 1$	$\ln(e) = 1$
$\log(100) = 2$	$\ln(e^x) = x$
$Log(10^{x}) = x$	

 $\log A^{x} = x \log A$ $\ln A^{x} = x \ln A$

$$\log\!\left(\frac{\mathbf{A}^{\mathbf{x}}}{\mathbf{B}^{\mathbf{x}}}\right) = \log\!\left(\frac{\mathbf{A}}{\mathbf{B}}\right)^{\mathbf{x}} = \mathbf{x}\log\!\left(\frac{\mathbf{A}}{\mathbf{B}}\right)$$

 $\log(AB) = \log A + \log B$ $\log\left(\frac{A}{B}\right) = \log A - \log B$

Factors for Reaction Rate A-> B

1.Concentration

- Rate = $-\Delta[A]/\Delta t$
- Rate law; Rate = k[A]^x
- 2. Temperature and Rate
 - Found in the Rate Law Constant, k

Temperature and Rate

Lower temperature

Therefore one can conclude that:

 $k(T) \varpropto e^{f(T)}$

- Generally, as temperature increases, so does the reaction rate.
- This is because *k*, rate constant, is temperature dependent.

Arrhenius Equation

Svante Arrhenius developed a mathematical relationship between k and E_a :

$$k = A e^{-\frac{E_a}{RT}}$$

The greater (Ea/RT) is; the smaller k is; slower reaction rate !

where *A* is the frequency factor, a number that represents the likelihood that collisions would occur with the proper orientation for reaction.

Arrhenius Equation

When k is determined experimentally at several temperatures, E_a can be calculated from the slope of a plot of ln k vs. 1/T.

The **Arrhenius equation** is similar in nature and can be used for two k values and two temperatures E_a may then be calculated $ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left[\frac{1}{T_1} - \frac{1}{T_2}\right]$ **Example:** The activation energy of a first order reaction is 50.2 kJ/mol at 25°C. At what temperature will the rate constant double?

(1)
$$k_{2} = 2k_{1}$$

(2) $\ln\left(\frac{k_{2}}{k_{1}}\right) = \ln\left(\frac{2k_{1}}{k_{1}}\right) = \ln(2) = \frac{E_{a}}{R}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)$
(3) $\frac{E_{a}}{R} = \frac{50.2 \text{ kJ/mol} \times \frac{10^{3}\text{J}}{1\text{kJ}}}{8.314 \frac{J}{\text{mol} \cdot \text{K}}} = 6.04 \times 10^{3} \text{K}$
(4) $\ln(2) = 0.693 = 6.04 \times 10^{3} \text{K} \times \left(\frac{1}{298\text{K}} - \frac{1}{T_{2}}\right)$
(5) $\frac{1}{T_{2}} = 3.24 \times 10^{-3} \text{K}^{-1}$
(2) $\ln\left(\frac{1}{T_{2}}\right) = 3.24 \times 10^{-3} \text{K}^{-1}$
(3) $\frac{1}{T_{2}} = 3.24 \times 10^{-3} \text{K}^{-1}$
(4) $\ln(2) = 0.693 = 6.04 \times 10^{3} \text{K} \times \left(\frac{1}{298\text{K}} - \frac{1}{T_{2}}\right)$
(5) $\frac{1}{T_{2}} = 3.24 \times 10^{-3} \text{K}^{-1}$

Activation Energy

- In other words, there is a minimum amount of energy required for reaction: the activation energy, E_a .
- Just as a ball cannot get over a hill if it does not roll up the hill with enough energy, a reaction cannot occur unless the molecules possess sufficient energy to get over the activation energy barrier.

Reaction Coordinate Diagrams

- It shows the energy of the reactants and products (and, therefore, ΔE).
- The high point on the diagram is the transition state.

- The species present at the transition state is called the activated complex.
- The energy gap between the reactants and the activated complex is the activation energy barrier.

Reaction Diagram and Catalyst

Path of reaction \rightarrow

A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed.

Homogeneous and Heterogeneous Catalysts

- **Homogeneous catalyst**: catalyst existing in the same phase as the reactants.
- Heterogeneous catalysis: catalyst existing in a different phase than the reactants.
 - The previous section gave an example of a homogeneous catalyst since the catalyst Br_2 was in the same phase as the hydrogen peroxide.
- The catalytic hydrogenation of ethylene is an example of a heterogeneous catalysis reaction: $H_2C = CH_2(g) + H_2(g) \longrightarrow H_3C - CH_3(g)$
- **ENZYMES** (biological catalysts)
 - They are proteins (large organic molecules that are composed of amino acids).
 - Slotlike active sites. The molecule fits into this slot and reaction proceeds. Poisons can block active site or reduce activity by distorting the active site.

Factors that Influence the Rate of Reaction

- Concentration of reactants,
- Types of reactions
- Temperature
- Presence of a catalyst
- Reaction mechanism

Sequence of Steps in Studying a Reaction Mechanism

Reaction Mechanisms

The overall progress of a chemical reaction can be represented at the molecular level by a series of simple <u>elementary steps</u> or <u>elementary reactions</u>.

The sequence of **elementary steps** that leads to product formation is *reaction mechanism*.

$$2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$$

 N_2O_2 is detected during the reaction!

Elementary step:

+ Elementary step: Overall reaction:

$$NO + NO \longrightarrow N_2O_2$$

$$\frac{N_2O_2 + O_2 \longrightarrow 2NO_2}{2NO + O_2 \longrightarrow 2NO_2}$$

<u>Intermediates</u> are species that appear in a reaction mechanism **but not** in the overall balanced equation.

An **intermediate** is always formed in an early elementary step and consumed in a later elementary step.

Elementary step 1:NO + NO \longrightarrow N2O2+ Elementary step 2:N2O2 + O2 \longrightarrow 2NO2Overall reaction 1+ 2:2NO + O2 \longrightarrow 2NO2

The molecularity of *a reaction* is the number of molecules reacting in an elementary step.

- Unimolecular reaction elementary step with 1 molecule
- **Bimolecular reaction** elementary step with 2 molecules
- Termolecular reaction elementary step with 3 molecules

Mechanism Involving Multiple Steps

- In a multistep process, one of the steps will be slower than all others.
- The overall reaction cannot occur faster than this slowest, rate-determining step.

The *rate-determining step* is the slowest step in the sequence of steps leading to product formation.

Reaction Mechanisms-Molecularity

Unimolecular Reaction

 $O_3^*(g) \longrightarrow O_2(g) + O(g)$

Rate Laws for Elementary Reactions

The rate law for an elementary reaction follows directly from its molecularity because an **elementary reaction is an individual molecular event.**

Unimolecular Reaction

$$O_3^*(g) \longrightarrow O_2(g) + O(g)$$
 rate = $k[O_3]$

Bimolecular Reaction

 $O_3(g) + O(g) \longrightarrow 2O_2(g)$ rate = $k[O_3][O]$

Termolecular Reaction

 $O(g) + O(g) + M(g) \longrightarrow O_2(g) + M(g)$ rate = $k[O]^2[M]$

TABLE 13.2 Rate Law Summary Table

© 2014 Pearson Education, Inc.